Genetic Enhancement of Memory and Long-Term Potentiation but Not CA1 Long-Term Depression in NR2B Transgenic Rats
نویسندگان
چکیده
One major theory in learning and memory posits that the NR2B gene is a universal genetic factor that acts as rate-limiting molecule in controlling the optimal NMDA receptor's coincidence-detection property and subsequent learning and memory function across multiple animal species. If so, can memory function be enhanced via transgenic overexpression of NR2B in another species other than the previously reported mouse species? To examine these crucial issues, we generated transgenic rats in which NR2B is overexpressed in the cortex and hippocampus and investigated the role of NR2B gene in NMDA receptor-mediated synaptic plasticity and memory functions by combining electrophysiological technique with behavioral measurements. We found that overexpression of the NR2B subunit had no effect on CA1-LTD, but rather resulted in enhanced CA1-LTP and improved memory performances in novel object recognition test, spatial water maze, and delayed-to-nonmatch working memory test. Our slices recordings using NR2A- and NR2B-selective antagonists further demonstrate that the larger LTP in transgenic hippocampal slices was due to contribution from the increased NR2B-containing NMDARs. Therefore, our genetic experiments suggest that NR2B at CA1 synapses is not designated as a rate-limiting factor for the induction of long-term synaptic depression, but rather plays a crucial role in initiating the synaptic potentiation. Moreover, our studies provide strong evidence that the NR2B subunit represents a universal rate-limiting molecule for gating NMDA receptor's optimal coincidence-detection property and for enhancing memory function in adulthood across multiple mammalian species.
منابع مشابه
The effects of CCK-8S on spatial memory and long-term potentiation at CA1 during induction of stress in rats
Objective(s): Cholecystokinin (CCK) has been proposed as a mediator in stress. However, it is still not fully documented what are its effects. We aimed to evaluate the effects of systemic administration of CCK exactly before induction of stress on spatial memory and synaptic plasticity at CA1 in rats. Materials and Methods: Male Wistar rats were divided into 4 groups: the control, the control-C...
متن کاملForebrain NR2B Overexpression Facilitating the Prefrontal Cortex Long-Term Potentiation and Enhancing Working Memory Function in Mice
Prefrontal cortex plays an important role in working memory, attention regulation and behavioral inhibition. Its functions are associated with NMDA receptors. However, there is little information regarding the roles of NMDA receptor NR2B subunit in prefrontal cortical synaptic plasticity and prefrontal cortex-related working memory. Whether the up-regulation of NR2B subunit influences prefronta...
متن کاملHippocampal NR2B-containing NMDA receptors enhance long-term potentiation in rats with chronic visceral pain
Pain and learning memory have striking similarities in synaptic plasticity. Activation of the N-methyl-D-aspartic acid receptors 2B subunits (NR2B-NMDAs) is responsible for the hippocampal LTP in memory formation. In our previous studies, we found the significant enhancement of CA1 hippocampal long-term potentiation (LTP) induced by high-frequency stimulation (HFS) in rats with chronic visceral...
متن کاملThe Protective Effects of Crocin on Input-Output Functions and Long-term Potentiation of Hippocampal CA1 Area in Rats Exposed to Chronic Social Isolated Stress
Introduction: The lack of social communication is associated with the primary risk of proper brain functions. It is reported that crocin helps relieve this problem. The present study examined the protective effect of two doses of crocin on Long-term potentiation (LTP) of hippocampal cornu ammonis 1 (CA1) area as a cellular mechanism in rats exposed to chronic social isolated stress. Methods: R...
متن کاملIncreased NR2A:NR2B ratio compresses long-term depression range and constrains long-term memory
The NR2A:NR2B subunit ratio of the NMDA receptors is widely known to increase in the brain from postnatal development to sexual maturity and to aging, yet its impact on memory function remains speculative. We have generated forebrain-specific NR2A overexpression transgenic mice and show that these mice had normal basic behaviors and short-term memory, but exhibited broad long-term memory defici...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2009